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A solution of the problem of optimal stabilization of rotary motion of a
gyrostat whose center of mass moves on an elliptic orbit in a central Newtonian
force field is derived, A method of successive approximations for the deter -
mination of optimal control is established,

The problem of gyrostat stabilization with its center of mass moving on a circular
orbit was solved in [1].

1, Let us consider an axisymmetric gyrostat with three flywheels moving in a
central Newtonian force field (O; and o are, respectively, the centers of attrac-
tion and of the gyrostat center of mass, Fig,1). We shall investigate the relative
motion of the gyrostat without taking into account its effect on the motion of the
center of mass which is assumed specified ( a bounded problem),

We use the following coordinate systems; system o0x;r,x3 rigidly attachedto the
gyrostat whose axes coincide with the principal central axes of inertia, with flywheel
axes lying on these axes; the inertial system O,X;X,X; with X;0,X, the orbit
plane; the Koenig axes ox,'z;’z,; whose ox; axis parallelto 0x, is the axis of

X, symmetry, and axes ox,’ and o0x, in
the plane 0%, , In steady motion
axes 0x;" and ox, are parallel to
axes 0;X; and (,X,. The spherical
system of coordinates R, @, ¥, inwhich

e R is the distance between points O; and

4 z, 0, ¥ is the angle between vector 0,0

i ! and the plane X,0,X,, @ is the angle

#i between the (,X;-axis and the projec-

tion of vector 0,0 on the plane X,;0,X,,

i is related to the inertial coordinate system

7, X4 by formulas

Fig.1

X,=Rcos®cos¥, X,=Rsin®cos¥, X;= R sin¥

These coordinate systems are shown in Fig. 1, where @y is the angle betweenaxes
0z, and oz,’, and ¢ the angle between the plane X 0.0 andthe o0z, -axis,

The principal central moments of inertia of the gyrostat relative to axes 02;7,7;
are denoted by C; == C, = C and C3, and the moments of inertia of flywheels by
I, =1,=1 and I,
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We assume that the gyrostat center of mass moves on an elliptic orbit with one of
its foci at point ;. Motion of the gyrostat center of mass is thendefined inspherical
coordinates by formulas

P ._ VxP
R=grime ¥ =—pm (+ecosp
¥Y=%=0 x=pM,

where P is the orbit parameter, € its eccentricity, I is the gravitational constant,
and M, the mass of the attracting center,

The equations of the gyrostat relative motion admit a uniform rotation at the relat-
ive velocity ® about the symmetry axis 0Tz normal to the orbit plane; the two fly-
wheels whose axes are in the Z,0x; plane are immobilized [1, 2],

Projections of the body instantaneous angular velocity py, ps, Ds On axes 0X1Z,T3
and of ¢;, gy, s OD axes ox,'z,’z, are connected by the relations

P1 = q1 €08 @1 1 G5 8in @1, Py = —¢; SiN @1 + 5 COS Py
Ps=a+ @, ¢ = ¢ + PPy,
where f;; are the directional cosines the system of coordinates 0z, x,'z3 relative
to 0,X,X,X,.
The gravitational forces are determined by the force function whose approxi-
mate expression is of the form [1, 2]

wM i x 3 %(C ~C’
U=+ (= O — 5 252 thﬁﬁ
i=1
where M is the gyrostat mass,
Equations of the gytostat relative motion in Koenig's axes are of the form [1, 2]

Cq' + (C3 — C) @93 + C301'0 + 085 — 0382 + 817 = Mz (L)
Cg; + (C — Co)gs — Cap'ay + 8195 — 8301 + & = My

Cs(q3 + @) + 182 — 9281 + g5 = My,

& T 1a + (g + I6)o 7 = wy,

& +1e — (& +1g)e) =w,, g +Is(gs+ @) =

Bii + ‘Izﬁzs — g =0 (=1, 2,3

2 5, P Mx,f=i~§—;-;—ﬁ,-,, My =0

i=1 i=1
where g; (i = 1, 2, 3) are the kinetic moments of flywheels relative to Koenig
axes, w; are control moments, and Mx;’ are moments of gravitational forces
about the same axes.
The considered steady solution is of the form

¢ =0+ e =0 (1.2
q; = 01 ﬂil == 07 L= j; ﬂii = 1-7 i, j = 1’ 21 3
81 = & — 0? g3 = gsc! W = Wy = Oy ggo = ""63&)1

The equations of motion (1. 1) admit the first integrals
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267 =1 2 Bubu= 3 Bibs = 3 Bubc -

and the integrals that define the constancy of projections of the gyrostat kinetic
moment on the system axes 0, X,X,X,

i - (Cqy+ g)Bir + (Cqy - 82)Bia - [Cslgs + @1') + galBis = Ay (1.3)
L1 = MR? (¥ sin ® — (I) sin ¥ cos ¥ cos @)

L, = —MR? (¥ cos @ -I- @ sin ¥ cos ¥ sin D)

Ly = MR*® cos® ¥

kb =0, h’ =0, hy’ = MV;J) + Cs (0 + @) + g5

Using (1, 3) for eliminating g; from Egs, (1, 1), for the relative motion of the
gyrostat we obtain equations of the form

C—Ng ' =—(C—DNg'e + (g4 91) i§1 (Ri — L) Biz —

3
gz 2! (h;i — L) Pis + My, —w
i=1
(C—Dg" = (C—Dge'—
3 3
(93 + 1) i§ (hi — L) Ba + @1 igi (hi — Ly) Pis + My — wy

3 3
(Cs—Ia)(gs +@1') = @2 2{ (hi — L) B — q1 21 (hi — L) B — ws
=1 i=
Assuming that motion (1, 2) is unperturbed, we denote perturbations of variables
by Bii's @ hi’, wi where

Bis =B (1) Bu=1+8:" ¢&=24q'
hi =h" (i =1,2), hy=hs —VxP M-+ hy
w; =w;' (i =1, 2), wg=—(C3—1I3)9," + wy

Omitting the primes, we write equations of perturbed motion as

3
@ = h1ags — (B1s + 0*) g2 + 0* 3} Ay + (1.4)
=1
Bisv sin 2P + 2B55v sin? @ vl + @,

g = (hs + 0¥) q1 — hygs — o* 2 hyifin —

2P13v cos? @ — Pygv sin 2D 4 v, + Q,
g3’ = haiga — hsoqy + vs + Qs
ﬁii. = Biiv i = 1, 2, 3
Bia = —qs + By, Pa = —43 + By, Bas’ = —qp + B,
Bar' = gs + By, Bis’ = 9 + Bys, Bae = ¢ + Bj,

3
Bil = q3ﬁi2 — 42[31'3» Ql = 12‘ hliBil + Ulﬁ
=1
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3 3
Q.= ié hyBis + U, Qs = 21 h3;B;3

by =h,/(C—I), hs; zhi/(cs—ls)’ j=1,2
hg = (h° + ha) [ (C — 1), hgs = (h° + hg)/ (Cs — Iy)
o* =0, + o, v=3%xR3(C;—C)/(C—1I)
where V; are control moments related to w; by formulas
(C — Dy = —w, + o*hy
(C — Iy, = —wy — 0*hy, (C3 — I3)vs = —w;

Note that the order of smallness of B;; relative to g¢; and f;; is not lower than
the second. The terms Uyg and U,g, due to gravitational moments and dependent
only on f;; , vanish when B;; = O are also of the second order of smallness,

The problem of optimal stabilization is formulated as follows, We have to
determine control V; in the form of functions of variables ¢; and f; j so that the
trivial solution of system (1,4) is asymptotically stable with respect to variables q;,
and P;; and that the condition of minimum of the integral type functional

5‘ Q (q1’ 42, q31 ﬁll, L ) 5331 Uy, Ug, U3, (D) dq)
0

2. To solve the problem of stabilization we investigate the periodic solution of
the linear inhomogeneous system of the form
X=xd+ A1) x+9() (2.1)
where x is a vector with components z; (i = 1,. .., n), d = const is a parameter
whose magnitude will be defined later, 4 (1) isan n X n periodic matrix of period
T which satisfies the conditions of the theorem on the existence an uniqueness of
solution of the differential equation, and @ () = col {®; (8),. .., Pn (?)} is a periodic
vector function of period T which has a bounded derivative,
Let us prove that the estimate
Ix(+e@/dj<c/d (2.2)

is valid for the periodic solution of that system,
Consider the system
Ii. = dl'i + Q; (l), = 1,. T (1

The periodic solution of the i-the equation is of the form

T

(1 .

z; ) =— q)zé ) =i+ 4T )y S cpi- (t -E) 3 (T—=)d£
0

We define the norm of x (¢) as
n
Ix® )= ) max,|z; ()|
i=1

Then
Ix(+@@/d|<c/deg=|9 ()] (2.3)



842 A. V. Gorshkov

We use the method of successive approximations for determining the periodic solu-
tion of the system, and introduce the small parameter e == 1 /d. The equation of
the / -th approximation is of the form

xk=xtd + A (1) X1 @ (1), x°=xd+ ¢ (1)
We shall show that the sequence x¥ (¢) converges to  x (¢). Denoting x* (1) —
xk~1(7) = y*1 (1), for y* (s) we obtain
T
YO == A gy ooy TR
0
Iy @ r<iamily*= @

Hence for the convergence of the sequence it is necessary that [4 (1) < 4. For
ly° (| we have the estimate

(2.4)

Iy @I<ia ) le@l/a (2.9)
Using (2.4) and (2.5) we have for the remainder x () — x° () the estimate
Ix—xOI<Ix@®)—. .. —x*@+xFO)—. .. —x° @< (2. 6)
\ o\ 140F _140ieo)
Z||yk(t)||<||y (t)“Z aF <d(d—|]A(t)||)
k=0 k=0
1t follows from (2, 6) and (2, 3) that
Ix @) + @0/ dl < (| A@N el -+ le” () / d* + O (&) (2.7

The inequality (2, 2) has been thus proved, It is possible to show in a similar way
the convergence of successive approximations by the substitution of variable T of the
form dt/dt = @, (1), where o, (1) a positive periodic function of period T, ,for
the independent variable ¢ .

3. Let us consider the linear system (1, 4) without terms Qi, which has a zero
solution, In conformity with [1] we specify the integrand of the minimized function-
al in the form

3
Q = Fi(gu @)+ F (B, @)+ n % vi® + A1 (g B D) S
3

F, = 2 leij((D)Qin
i, j=
3 3

Fo= (ny2 Y (Y aB) +

=1 i, =1

8
[(o* Zhusﬂ 4 By (1 +- cos 20) - vByssin 2@] X

i=1

3
( i aﬁ)ﬁﬁ) — l:(ﬂ* Z hliﬁi! + '\7513 sin 2@ + ‘Vﬁzs 4
i, j=1 i=1

(1 — cos 2(13)]( i ag})ﬁu)

i, J=1
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where F; and F, are positive definite quadratic forms with undefined coefficients
€ij (@) and a;® (D) at variables g; and B, ; » respectively (the positive de-
finiteness of Fy is proved below).

We seek an optimal Liapunov function V° of the form [1]

3 3 3
Ve= 2;1 [kB.% + 2B 121 a (@) q] 4+ m 3 ¢ (3.2)
%, )= == =1
On the basis of theorems in [3, 4] we obtain for V° the equation in partial deriva-
ti
- ave 1 > ave \2 > ave
S0 T (751—) +Z(Hi—55i—+7~i‘h)+
i=1 1=1
ave .
-5%,7‘&] + Fi(g;, @) -+ Fa(Bijy @) + Ai(gi Bisn @) =0
= Y
3
H; = hiyqs — (his + 0*) g3 + o* Z hyiBie + Bisv sin 20 +
=1
2Bsgvsin? @
3
Hy = (hiz + 0*) q1 — hngs — o* 2 hyiBit — 2813v cos? @ —

=1
ﬁga'\’ sin 2(1), Ha = h31q2 - ’%2‘11
A = (aVO / aﬁsz — v/ aﬂzs), Ay = (aVO / 6513 —av°/ aﬁsl)
xa = (aVo / aﬁzl -_ 6V° / aﬁlz)

Equating to zero the coefficients at like second order terms, we obtain systems of
linear differential equations for the determination of a;;» (@) and an algebraic
system for e;; , as functions of parameters m, n, & and @. In particular, for

a,5 we have the equations
da{l)
13 1 .
0 = 03 — (b + 0%) 0 + hgal) — mv sin 20

da{®
13 2
o = aisd + (his + 0*) af) — hyyal® — & 4 2mv cos? @

dafy) @)
20 = Qg — h,12a‘§.]é) + hua{?
0 — (h1z + 0¥) hgo
A(D) = [hys + o* 0 —ha

- h13 hn O
@ (@) = col {— mv sin 20, — k + 2mwv cos? @, 0}
whete d=m/(2n).

On the basis of estimate (2.7) we obtain

a0 = mvsin 20 /d, a5 = (k — 2mv cos?®@) / d, a5 =0

The remaining @i;") are of a similar form, More exact values can be obtained by
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using the method of successive approximations described in Sect, 2,
Let us now prove the positive definiteness of V° and #, . To determine the
sign of F, with an accuracy to the first order we pass from the dependent variables
Pi; to the independent Krylov angles in conformity with the relations
Bis= v, Bsi= —, Pay=0, Pys=~ —0

Pro = B = P = Bao =~ Pas =~ 0

The expressions for /', in (3.1) and the obtained approximations of ;") ()
yield
Fy = n {02°F,(1 + 2F, (B — 4vBy (0*hy3 — v))} (3.3)
FO) = 4k | m? — 0*?h32 — 4vyd (v — 0% hyg)
vi =sin @, y, = cos D
Separating in the expression for F, the complete square, we find that F, is
positive definite when
FoO>0, i=1,2 (8.4)
4K | m? > 0*%hyy?, 4K/ mP > (0*hyy — 2v)2
Let us show that the first two inequalities are equivalent to the two second ones.
Let v (v — @*hy3) > 0, then
4% | m? — 0*2h;2 — 4v (v — o¥hg) v >
4k | m? — (o*hy3 — 2v)2 >0
i.e. we obtain the fourth inequality, If v (v — w*hyg) << 0, then

4k | m® — 0*2h 2 — 4y (v — o*hy) viE >
43 | m? — 0**h2 >0
Finally, for the positive definiteness of F; we obtain

2k | m > maxocp,n) | 0%y | (3.9)
2k | m > maxoeq,any | ©*hy3 — 2v |

The coefficients in form F,; are of the form

ey = nd® 4 a3 — az, ey = nd® + a5 ® — a5

ess = nd® -+ ap® — ay®, 2, = ay ™M — a;3H — ag® 4 ay4?

2653 = (hyy — hg) m — ay® + a,® — a;5% + ay®

2e13 = (hgy — hp)m — a5 + a1, — agy® + 294"

when d is fairly large the forms V° and F, are positive definite. When con-
ditions (3. 4) are satisfied the system is stable according to the first approximation,

We select higher order terms A; of the form

2 ave
[\1 = — -5-6—”—
i, j=1

On the basis of the theorem in {3] the control is of the form

B;;
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v; = —(2n)713V° / ¢,

Let us consider the complete system that defines the gyrostat relative motion,
Formula (3. 2) derived for function V° , obviously, solves the problem of stabiliza-
tion by virtue of the complete system, if the quality criterion is of the form

3
o ave
o= 0.~V o
4 i
i=1
Since the order of supplementary terms is not lower than the third, the fixed sign
property of Q, is not violated,

Thus the derived control

3
w, = (C — D){dg; + @nyt D) aPBi) —(— 1Y o*hgy; 1 =1,2
i, =1
3

ws = (Cs — I3)(dgs - 2n)™ X afPBys)
i, j=1
ensures optimum stabilization of motion (1. 2) when condition (3, 5) is satisfied and the
integrand is of the form (3, 1),

The author thanks S, N, Shimanov, his science tutor, for stating the problem and
interest in this work,
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